
Identification and Analysis of Coupling Factors in
Service Interface

DR.T. Karthikeyan #1, J. Geetha *2 ,R.M.Karnan*3
Department of Computer Science, P.S.G. college of Arts and Science,Coimbatore, India

* Research Scholar, Department of Computer Science,Bharathiar University, Coimbatore, India
* Professor and head Department of Computer Science and enggTamilnadu College of Engineering, Coimbatore, India

Abstract—Coupling is the utmost important design
characteristics of Service Oriented Architecture. In the
services, service interface is the only binding between service
consumer and service provider. The service interface has to be
designed first. During the design it has to hold the design
characteristics of service oriented architecture. Coupling is
directly related with the reusability and performance of the
service. Therefore the measurement of degree of coupling at
the design stage is extremely important. As our focus is to
propose metrics for evaluating coupling in service interface,
this paper identifies and analyses the structural factors that
causes coupling.

Keyword- Coupling, coupling factors in service interface,
SOA, coupling in XML schema

I. INTRODUCTION

Coupling is an elementary and important concept in
software and software development process. In the context
of object oriented programming Coupling is the degree to
which one class knows about another class. The continuous
change in technology and needs of user causes continuous
change in the software also. It will increase the
maintenance cost and effort. In order to reduce this effort
and cost, the software is divided in to number of modules
which are as independent as possible. When one module
know about the another module, then there is a dependency
between them. The existent of dependency between
modules, components or services is called as coupling. In
Service Oriented Architecture (SOA), the principle
characteristic is loose coupling. The dependency exists
between the services affects the flexibility of the system [1].
Loose coupling reduces the impact of change in the system
when new functions are inserted into the system [2].

Service Oriented Architecture always relies on the
fundamental design principles. To comply with the
coupling, the service and consumer should not interact
directly. They should communicate through service
messages. These messages are the realizations of the
service interface. In SOA, the web services are
communicated with each other through their interfaces. The
interface of a web service can be defined by the
combination of WSDL and XML schema [5][6].

The design techniques that can be applied to the service
interface highly determine the coupling of the service. In
order to measure the degree of coupling in service interface
designs the structural elements which causes coupling has
to be identified. The service interface is designed with xml
schema. In the service interface different types of schema

structures and elements are used to define the data[3].
When one element refers the other element directly or
indirectly causes dependency between them. As the number
of references increases, the degree of coupling will be
increased. This paper identifies and analyses the structural
elements of xml schema which are used to design service
and also causes coupling.

II. GLOBAL ELEMENTS AND GLOBAL ATTRIBUTES

Elements and attributes are defined in xml schema as
either global or local. A global element or attribute is the
one defined as an immediate child of the <schema>. If an
element or attribute is nested in another component, it is
said to be local. Global elements or global attribute will be
reused from the target schema as well as from other schema
documents. What will happen if all the elements or
attributes are declared as global? If all the elements or
attributes are declared as global, the number of attribute or
element references increased. It will also increase the
complexity and thereby increasing of coupling of the
schema [4]. Sometimes except one element, all elements
may be declared as local elements (Example-1). Here all
the elements are bundled together as a single element. No
element is depending on another element. The changes in
these elements have less impact. The complexity is also
less. Since there is no dependency we can say there is no
coupling.

<xsd:element name="Book">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Title" type="xsd:string"/>
 <xsd: element name="Author" type="xsd:string"/>
 <xsd: attribute "language" type="xsd:string" />
 </xsd:sequence>
 </xsd:complexType>
 </element>
Local Element and attribute Declaration (Example-1)

In other case, to break up the system into more number

of small components, all the elements may be declared as
global and they are assembled by means of references
(Example-2). Since the elements are referenced, if there is
change in one element the impact will be high. The
complexity is also high. There is a dependency between the
elements and hence coupling is also high.

T. Karthikeyan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 43-46

www.ijcsit.com 43

<xsd: element name="Title" type="xsd: string"/>
<xsd:element name="Author" type="xsd:string"/>
<xsd: attribute name="language" type="xsd:string" />

 <xsd:element name="Book">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="Title"/>
 <xsd: element ref="Author"/>
 <xsd:attribute ref="language" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd: element>

Global Element and Attribute declaration (Example-2)

III. TYPE REFERENCES

The element type declaration can be specified with the
“type” attribute. The XML schema types can be classified
into two types namely Simple Type and Complex Type[7].
The user can independently define these types. A simple
type is a type that only contains text data that can be used
with element and attribute declarations. The simple type is
used when a restriction is placed on an embedded simple
type to create a new user type which is explained in section
IV-B of this paper. The complex type is a type which
contains one or more elements or attributes (Example-3).

<xs:element name="Name" type="xs:string" />
<xs: element name="Department" type="xs: string" />

<xs: complexType name="NameType">
 <xs:sequence maxOccurs="unbounded">
 <xs:element ref="Name" />
 <xs:element ref="Department" />
 </xs:sequence>
</xs:complexType>

<xs: element name= “student” type= “NameType”/>
<xs: element name= “teacher” type= “NameType”/>
 (Example-3)
In the above example NameType is a complex type

declaration which contains two children Name and
Department. Once a complex type is defined any number of
elements can be defined of that type. Here the types are
referred. In the example the elements student and teacher
are elements whose types are NameType. A change in the
type Nametype affects both the elements student and
teacher. This kind of dependency also causes coupling [7].

IV. INHERITANCE

In Object Oriented context the Inheritance
coupling means that the coupling of two classes when one
class is a subclass of another [8]. The coupling of this type
is through data members that are inherited from a parent
class. In Xml schema the coupling due to inheritance
occurs when a data type is derived from another data type.
The type derivation allows creating the base type from

which other types can be derived. The types can be derived
by means of Type extension, Type restriction, Groups and
Redefine [6].

A. Type Extension

In Type extension pattern, a complex type can be
extended to add some number of attribute or element
declarations. In the following example (Example-4) the
Extended Student type derives the student type which act as
a base type. The Extended student contains the attributes
grade, level and birth-date along with the elements Name
and Major which are derived from the Student type. There
is a coupling between student and Extended Student.

<xs:complexType name="Student">
 <xs:sequence>
 <xs:element Name="name" type=”xs:string”/>
 <xs:element Major= “major" type = “xs:string”/>
 </xs:sequence>
</xs:complexType>
<xs:complexType name="ExtendedStudent">
 <xs:complexContent>
 <xs:extension base="my:Student">
 <xs:attribute name="grade" type="xs:string"/>
 <xs:attribute name="level" type="xs:string"/>
 <xs:attribute name="birth-date" type="xs:date"/>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>
Complex Type Extension (Example – 4)

B. Type Restriction

The restriction type pattern also used to derive a new
type from the base type. But the occurrence of base
elements can be limited or restricted. Both simple and
complex type can be restricted. The following is the
example (Example – 5) for deriving data types by means of
type restriction from the base type Item.

T. Karthikeyan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 43-46

www.ijcsit.com 44

<xs:complexType name="Item">
 <xs:sequence>
 <xs:element name="number" type="xs:string"/>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="size" type="my:Size" minOccurs="0"/>
 <xs:element name="color" type="my:Colors" minOccurs="0"/>
 </xs:sequence>
</xs:complexType>
We can restrict the Item as:
<xs:complexType name="LimitItem">
 <xs:complexContent>
 <xs:restriction base="my:Item">
 <xs:sequence>
 <xs:element name="number" type="xs:string"/>
 <xs:element name="name" type="xs:string"/>
 </xs:sequence>
 </xs:restriction>
 </xs:complexContent>
</xs:complexType>

 Complex Type Restriction (Example – 5)

A simple type can also be used to create a new type

through restriction. The following is the example for
simple type restriction.

<xs:element name="bike" type="BikeType"/>
<xs:simpleType name="BikeType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Honda"/>
 <xs:enumeration value="Activa"/>
 <xs:enumeration value="Kinetic"/>
 </xs:restriction>
</xs:simpleType>

Simple Type Restriction (Example – 6)

C. Groups

The collections of elements are allowed to be referenced
and inherited using Groups in XML schema. Once a list of
elements have defined as a group, it can be referred
anywhere within the xml schema. In the given example
(Example-7), once address group is referenced, address
element gets four child elements namely StreetAddress,
City, state and PostalCode. In the same fashion a group of
attributes can also be inherited. Here we can say that
element Address depends on the AddressGroup.

<xs: element name="Address">
 <xs:complexType>
 <xs:sequence>
 <xs:group ref="AddressGroup"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
<xs:group name="AddressGroup">
<xs:sequence>
 <xs:element name="StreetAddress" type="xs:string"/>
 <xs:element name="City" type="xs:string"/>
 <xs:element name="State" type="xs:string"/>
 <xs:element name="PostalCode" type="xs:string"/>
</xs:sequence>
</xs:group>

(Example-7)

In the above mentioned ways, the types are inherited.
The advantage of inheritance is attaining of reuse. But at
the same time, due to the derivation of one type (sub Type)
from the other type (base type), the inheritance increases
coupling between the type definitions. For a good design of

service interface it should be loosely coupled. In order to
reduce the coupling effect, the usage of inheritance
derivation should be minimized.

V. MODULES

The important schema declarations are import, include
and redefine which supports modular service interface[9].
These definitions bring definitions and declarations of
external schema into the current schema. The “include”
brings all definitions and declarations of an external
schema whose target namespace is the namespace of
current schema. It is usually used to extend the existing
schema. The “redefine” does the same as “include” except
it is used to redefine the available data type definitions of
included schema document. The “import” also does the
same as “include” except that external target namespace is
different from the existing schema document. It brings all
definitions and declarations of different name space schema
documents to construct a new schema. In all these three
methods, one xml schema documents depends on the
structure of other schema documents and we can say that
there is coupling between the documents.

VI. COUPLING AND REUSABILITY

During the designing of schemas the developers have to
maintain a balance between reusability and coupling of
schemas. If the intention is to design reusable schema,
elements and types should be declared as global one. This
will maximize reusability of schemas. The namespaces are
exposed for reusability. But this causes the increment of
coupling. (Figure – 1)

Figure – 1. Coupling Vs. Reusability

 In the highly coupled schemas, the elements and types

are highly interdependent. In this case it is difficult to do
modifications and additions in future. Coupling is low, the
reusability is also low. Coupling is high, the reusability is
also high. Therefore the designing of reusable schema
reduces future enhancement due to the presence of coupling.
Another issue is performance of the service. More number
of modules affects the performance of the system. There is
a tradeoff between couplings, reusability and performance.
Hence the selection of appropriate schema design pattern is
important. Depending on the scope of the schema, the
design pattern has to be selected.

T. Karthikeyan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 43-46

www.ijcsit.com 45

VII. CONCLUSION

This paper identified the structural elements that causes
coupling in xml service interface. We cannot say a
particular design is the best one for service interface.
However evaluating the service interface is very much
important before going to develop the service. The service
interface is the only known and measurable document to
the consumer. Therefore service design characteristics in
service interface should be evaluated. Our future work is
proposing metrics for evaluation of service interface. The
identified factors in this paper will be taken to continue our
work.

REFERENCES
[1] Michael Rosen, Boris Lublinsky, Kevi T. Smith and Marc J. Balcer,

“Applied SOA”, Wiley India Edition, 2008
[2] Antony Reynolds, Matt Wright, “ORACLE SOA suite 11g R1

Developer’s Guide “, Pack Publishing Ltd., 2010
[3] http://www.ibm.com/developerworks/library/x-schemascope/.
[4] Dilek Basci and Sanjay Misra, “Measuring and Evaluating a Design

Complexity Metric for XML Schema documents”, Journal of
Information Science and Engineering, 25, 1405-1425 (2009).

[5] Thomas Erl, “SOA principles of Service Design”, Prentice Hall,
2009.

[6] Thomas Erl, Anish Karmarkar, Priscilla Walmsley, Hugo Haas,
Umit Yalcinalp, Canyang Kevin Liu, David Orchard, Andre Tost,
James Pasley “Web Service contract Design and Versioning for
SOA” Prentice Hall, 2009.

[7] Eric Van der Vlist, “XML Schema”, Oreilly Publisher, 2002.
[8] Lionel C.Briand, Jhon W. Daly and Jurgen K. Wust, “ A Unified

framework for coupling Measurement in Object Oriented Systems,
IEEE transactions on Software Engineering, Vol -25, January – 1999.

[9] James Bean, “SOA and Web Services Interface Design, Principles,
Techniques and Standards”, Morgan Kaufmann Publishers is an
imprint of Elsevier,2010.

T. Karthikeyan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 43-46

www.ijcsit.com 46

